National Transport Library Research Database

MARTEC ArTECO SKF Optimisation of rolling bearing functions for thruster shafts (MARTEC ArTECO SKF Optimering av rullningslager funktioner för axlar i trustrar)

  • Lavaine, Pierre
  • SKF Sverige AB, Svenskt företag eller organisation, 556240-8301
Sponsors, duration, budget: Trafikverket ; 2015-01-01 -- 2017-12-31 Registration number:
  • Trafikverket 2017/64272
Subject(s): Online resources: Abstract: Utvecklingen av ett mekaniskt system härstammar ofta från små steg i några förbestämda riktningar. Med detta arbetssätt kan man inte utforska alla möjliga fördelar som samspelet mellan individuella komponenter eller funktioner skulle kunna erbjuda; detta är ännu mer sant i ett system som en truster (= styrbar framdriftspropeller) där många aktörer levererar olika komponenter; ett sådant förfarande skulle kräva stor förbrukning av tid och resurser utan säker avkastning och bara få företag kan bekosta sådant forskningsarbete på egen hand. Projektets mål är att optimera val av lager för trusteraxlar och deras inbyggnad i en driftmiljö så nära som möjligt en riktig truster med sina särskilda smörjningsförhållanden, med fokus på: * driftsäkerhet, * krafttäthet, * förutsägbarhet, * energieffektivitet. Ett lagers prestanda är väldigt beroende av prestandan i sitt smörjmedel. Denna är också en högeffektiv markör och bärare av information gällande lagrets tillstånd. Därför är val av smörjmedel, hur det tillförs lagren och hur det underhålls viktiga parametrar för att garantera en säker, förutsägbar och effektiv lagerdrift. I detta syfte kommer * Olika produkter, existerande eller under utveckling, som lager och lagerutförande, beläggning, nya eller okonventionella smörjmedel, * Olika lösningar, existerande eller under utveckling i områden inbyggnad av sensor i lager, signalanalys, punktsmörjning, * Eller existerande tillämpningar som inte har prövats i en trustermiljö att analyseras på ett systematiskt sätt för att studera hur de eventuellt samarbetar med varandra samt för att skapa riktning till en eller flera tänkbara lösningar som kommer att realiseras och testas i en ny truster konstruktion i projektets sista fas.Abstract: Development of a mechanical system is usually the result of small steps in a few main pre-defined directions. As such, it is not exploring all potential benefits that could result from the matching of individual components or functions, as this is indeed a time and resource consuming task that may ead to a dead end. Very few companies can afford to perform such exploration on their own, if any. Therefore the objective of this project is to optimize shaft bearing selection and integration into thrusters for: * reliability, * power-density, * predictability, * energy efficiency in an environment as close as possible to the actual thruster and lubricant operating conditions. The bearing performance is highly dependent on the lubricant performance. The lubricant is also a good vector of bearing condition. Therefore, not only the choice of lubricant, the way it is delivered but also the way it is maintained are of very high importance to ensure a reliable, predictable and efficient operation of the bearings. For this purpose, the following tasks will be performed in a systematic analysis in order to study their interaction and generate one or more preferred solution path(s) in new thruster configurations yet to be designed and tested. Description of Technical Work / Tasks. Task 5.1: Bearings operation and performance baseline. Following the choice of thruster design to be used as a base for the EVT by Wärtsilä, a first engineering phase will lead to a selection of relevant bearing designs or features to be implemented in the thruster and tested to serve as a baseline to judge the developments to take place in tasks 5.2 to 5.4. Smart versions of standard bearings, based on SKF sensor technology will be developed and manufactured. Performance of the bearings under a range of operating conditions originating from field measurements, defined together with Wärtsilä and other participants for their relevance will then be evaluated in the thruster test rig. These operating conditions will not only relate to the actual thruster load cases but also housing deformation and lubricant cleanliness. Multiple bearing parameters are to be recorded such as bearing loads, temperatures, vibrations, acoustic emissions, bearing clearance, in combination with thruster as well as lubricant operating parameters. At the end of the testing period, bearings will be dismounted and disassembled for inspection of their condition. The performance results of the bearings (and of the thruster as a whole) using these bearings will be analysed to establish a baseline for the directions to take in the next task. Numerical simulation of specific operating conditions is also expected to take place in order to strengthen and complete the above analysis. Task 5.2: Assessment of bearing performance with new lubricants. A focus of the overall project being on the use of new lubricants that can be classified as EALs, it is important to know or establish if not only gears but also bearings can run with such lubricants and quantify the benefits of this usage. Different (3-4) bearing executions based on already existing features or under development will be engineered and manufactured, based on the results of step 5.1. First will the bearings be lab tested by TUL with the lubricants selected by them as most promising. Then, Smart versions of the most promising bearing executions and lubricant will be tested in the thruster test rig. A similar process of evaluation as for task 5.1 will then take place, focusing: * on the bearing condition (reliability), * on the thruster performance (energy efficiency), * on the reading, interpretation and correlation of the signals from the smart bearings with the * bearing condition, to evaluate how new lubricants can affect the models for bearing predictability. Task 5.3: Assessment of bearings performance under improved lubrication systems (i.e. objective to minimise oil volume and usage). Next step is to assess improved lubrication systems in terms of bearing efficiency (lubrication, cooling, reliability), thruster efficiency (energy), oil degradation and consumption. This step is to be driven in coordination with Wärtsilä, TUL and VTT. An engineering phase will look into: * Smart bearing set-up based on the results of step 5.2, * the appropriate lubricant delivery system (also part of SKF Competence area and Product range) including sensor for oil monitoring (source to be defined, based on lubricant developments). * the integration of the whole into the thruster rig. Testing will then take place in the thruster test—rig. A similar process of evaluation as for task 5.2 will then take place, focusing: * on the bearing condition and oil degradation (reliability), * on the thruster performance (energy efficiency), * on oil consumption (economy), * on the reading, interpretation and correlation of the signals from the smart bearings, as well as their adaptation to a potentially better environment. Task 5.4 Optimised bearing design and integration to thruster. Last step is to capitalise on the findings on the 3 first steps to optimise the bearing design, the lubricant delivery system and their integration into the thruster, in order to reach proper interaction with the outcomes from the different parts of the project, and establish the final improvements for the thruster operations For this task, the engineering, testing and analysis steps will be defined at the end of task 5.3
Item type: